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Phase Diagram of QCD

} RHIC

e Early universe at zero density and high temperature
e neutron star matter at zero temperature and high density

e |attice gauge simulations at ;1 = O:
phase transition at 7. ~ 170 MeV



Crab Nebula
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Masses of Pulsars (Thorsett and Chakrabarty (1999))

PSR B1518+49
PSR B1518+49 companion
PSR B1534+12
PSR B1534+12 companion

PSR B1913+ 16 e more than 1500 pulsars

PSR B1913+16 companion

PSR BR127+11C known

PSR BR127+11C companion

PSR B2303+46 e best determined mass:

PSR BR2303+46 companion

M = (1.4411 + 0.00035) M 5

PSR J0437-4715 S
PSR 1101245307 (Hulse-Taylor-Pulsar)

PSR J1045-4509
PSR J1713+07

bSR 180207 e shortest rotation period:
e 1.557 ms (PSR 1937+21)

PSR B1855+09
PSR J2019+2425
PSR J0045-7319
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Structure of a Neutron Star — the Core (&ridolin weben

absolutely stable
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matter
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Neutron Star Matter for a Free Gas

but the corresponding equation of state results in a
maximum mass of only



Neutron Star Modelling



Neutron Star Matter and Hyperons

Hyperons appear at n ~ 2n
(based on hypernuclear data)

e nonrelativistic potential model (Balberg and Gal, 1997)

e quark-meson coupling model (Pal et al., 1999)

e relativistic Hartree—Fock (Huber, Weber, Weigel, Schaab, 1998)

e density-dependent hadron field theory (Hofmann, Keil, Lenske, 2001)



Ultracompact Neutron Stars with Hyperons — Hyperon Stars

e new stable solution in the
mass—radius diagram!

e neutron star twins:
Mhyp ~ M, but
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Rhyp < R,
: e selfbound compact stars
K for strong attraction with
o ot R=7-8km

00 02 04 06 08 10 12 14 1.6 1.8
M/M,

(JSB, Hanauske, Stocker, Greiner, PRL 89, 171101 (2002))
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Selfbound Star versus Neutron Star

neutron stars:
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Selfbound Star versus Neutron Star

(Hartle, Sawyer, Scalapino (1975!))

neutron stars:
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Signals for Strange Stars?
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Third Family of Compact Stars

third family neutron stars white dwarfs

stable modes
instable modes

(Schertler, Greiner, JSB, Thoma (2000))

¢ third solution to the TOV equations besides white dwarfs and neutron stars,
solution is stable!

e (enerates stars more compact than neutron stars

e possible for any first order phase transition!

— p.-13



Signals for a Third Family/Phase Transition?
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The Third Family: Quark Stars, Hyperon Stars ...

e MIT bag model (Glendenning and Kettner, 2000)

e Mmassive quasi-particles of quarks (Schertler, C. Greiner, JSB, Thoma,
2000)

e Kaon condensate (Banik and Bandyopadhyay, 2001)

e MIT bag and rotation (Bhattacharyya, Ghosh, Hanauske, Raha, 2004)

e Kaon condensate, quarks and rotation (Banik, Hanauske,
Bandyopadhyay, W. Greiner, 2004)

— p.15



hadrons / massl ess

massive quarks quarks

e

Two

Hin M X vl

nossibilities for first-order chiral phase transition:



The two possible scenarios
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Quark star twins? (Fraga, JSB, Pisarski (2001))

hadronic EoS ™~

Radius (km)

blue curves: pQCD calculation

n ~ 15 ng
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Massive Quark Stars? (ruster and Rischke (2004))
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e uses NJL model for pairing quarks

e Increased interactions gives massive quark stars
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Phases in Strange Quark Matter (rster, shovkovy, Rischke (2004))
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e phases of color superconducting quark matter in 3 equilibrium

e color-flavor locked phase (CFL), gapless CFL phase, metallic CFL phase

e normal (unpaired) quark matter (NQ) only at large temperatures

— p-20



Neutron Star Data
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Constraints on the Mass—Radius Relation

(Lattimer and Prakash (2004))
e spin rate from PSR B1937+21 of 641 Hz: R < 15.5 km for M = 1.4M,

e observed giant glitch from Vela pulsar: moment of inertia changes by 1.4
e Schwarzschild limit (GR): R > 2GM = R,
e causality limit for EoS: R > 3GM

— p.22



Heavy Neutron Stars in Pulsar—White Dwarfs Systems?

(Nice, Splaver, Stairs (2003))
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four pulsars with a white
dwarf companion

measure masses by
changes in the pulsar
signal

shaded area: from
theoretical limits for
white—dwarf companion

massive pulsar
JO751+1807:
M =1.6—2.8Mg (20!)

Independent of the inclina-
tion angle!
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|Isolated Neutron Star RX J1856

Data
Uncertainties

Model — — — —
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Photon Flux

Wavelength (A) (Drake et al. (2002))

e closest known neutron star
e perfect black—body spectrum, no spectral lines!

e for black-body emission: T'= 60 eV and R, = R\/1 —2GM/R = 4 — 8 km!
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Modeling the Atmosphere of Neutron Stars umwitz et al. (2003))

soft BB

kTS < 33 eV (30)

RS > 17 km (3a)

1072 107" 1072 107"
Energy (keV) Energy (keV)

e heavy element atmospheres ruled out, as there are no spectral lines!

e alternatives: two-component blackbody model (left plot)

— p.25



RXJ 1856: Neutron Star or Quark Star? (mimper et al. (2003))

12
Radius R (km)

e two-component blackbody: small soft temperature, so as not to spoil the x-ray
band

e excludes quark stars and even neutron stars with a quark core!?

— p-26



Spectra from Geminga (caraveo et al. (2004))
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e three component fit to spectra of the Geminga pulsar:
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e power law tail at high energies (from magnetosphere)
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Phase Resolved Spectra from Geminga (caraveo et al. (2004))
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e power law tail at high energies (from magnetosphere)

— p-28



Phase Resolved Spectra from Geminga (caraveo et al. (2004))

>,
=

®

c

]

-

=

e power law tail at high energies (from magnetosphere)

e hot black-body with a size of only R = 60 m (from polar caps)
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Phase Resolved Spectra from Geminga (caraveo et al. (2004))
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e power law tail at high energies (from magnetosphere)
e hot black-body with a size of only R = 60 m (from polar caps)

e cool black-body with a size of R = 10 km
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Phase Resolved Spectra from Geminga (caraveo et al. (2004))
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e power law tail at high energies (from magnetosphere)
e hot black-body with a size of only R = 60 m (from polar caps)

e cool black-body with a size of R = 10 km
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X-Ray burster
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e binary systems of a neutron star with an ordinary star
e accreting material on the neutron star ignites nuclear burning
e explosion on the surface of the neutron star: x-ray burst

e red shifted spectral lines measured!
(z=0.35 — M /Mg = 1.5 (R/10 km))
(Cottam, Paerels, Mendez (2002))



Future Probes Using X—Ray Bursts
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e X-ray bursts from accreting neutron stars originating from the surface

e measure profile of emitted spectral lines
e spectral profile is modified from space-time warpage

e — gives a model independent mass and radius!

— p.30



Neutron Stars in Globular Cluster (rutiedge et al. (2002))

Field gNSs

B Aql X-1
A Cen X4
@2129+47
> 1608-522

X-ray observations with the
Chandra satellite of
globular cluster (NGC5139)

spectra fitted with H
atmosphere

most sources show a hot
spot from accretion
(extremely small radii)

guiescent neutron stars
found (QNSs): thermal
emission from whole
surface measurable

allows to constrain the Eo0S:
R =14.3+2.5km
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Central Compact Objects (CCOs) in Supernova Remnants

(Pavlov, Sanwal, Teter (2003))
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e CCOs: point—like sources in the center of supernova remnants

e only observed in x—rays, radio—quiet, no pulsations seen

e temperatures of 0.2-0.5 keV and sizes of only 0.3—-3 km!?!
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Cooling of Supernova Remnants (kaplan et al. (2004))
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e known age of the neutron star constrains cooling curves
e newest data from four neutron stars suggest fast cooling
e standard cooling curves are too high!

e signature for exotic matter in the core?
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Pulsar Distribution in our Galaxy

* Parkes MB survey
Swinburne MB survey
Other disk pulsars

e distance estimate by dispersion measure (DM)
e dispersion due to conducting interstellar medium

e works for known electron number density distribution
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Future: Square Kilometer Array (SKA)

e [

receiving surface of 1 million square kilometers
1 billion dollar international project

potential to discover:
10,000 to 20,000 new pulsars
more than 1,000 millisecond pulsars
at least 100 compact relativistic binaries!

probing the equation of state at extreme limits!

cosmic gravitational wave detector by using
pulsars as clocks!

design and location not fixed yet, maybe it will be In
South Africa!

movie _ p.35



Summary
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Historical Notes to the , Quark Stars and Selfbound Stars

e Kurdgelaidze and Ivanenko 1965: collapse to quark stars

e Kurdgelaidze and Ivanenko 1969: superconducting quark matter

e Itoh 1970: quark star masses (M /Mg ~ 1073)

e Hartle, Sawyer, Scalapino 1975: selfbound stars with pion condensation

e Kallman 1975, 1976: Abnormal neutron stars (chirally restored matter) and
nuggets!
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Historical Notes to the , Quark Stars and Selfbound Stars Il

e Brecher and Caporaso 1976: obese quark stars within MIT bag EoS

e Baym and Chin 1976: pure quark star within the MIT bag model (like strange
star!)

e Haensel, Zdunik, Schaefer; Alcock, Farhi, Olinto, 1986: Strange Stars

— p.38
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